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2-(Alkylthio) carbonyl-2-(arylethyl)propyl cobaloximes were
photolyzed. When an aryl group is phenyl, a major process is a
radical cyclization to give 2-(alkylthio)carbonyl-2-methyltetralin.
On the other hand, B-thiolactone is a major product when an aryl
group is mesityl and an alkyl group is t-butyl.

We have been concerned with the biomimetic radical rearrangement of a thio-
ester group by using an organocobaloxime, organo (pyridine)-bis-dimethylglyoximato-
cobalt (III), as a coenzyme model, and have suggested the possible involvement of
cobalt in the rearrangement step.2’3) In the previous study, 2-(alkylthio)carbonyl-
2-phenylpropyl cobaloxime A (X=Ph) and 2-(alkylthio)carbonyl-2-methylpropyl
cobaloxime A (X=Me) were photolyzed to generate radicals B which rearrange to
radicals 9.2) In the former system (A, X=Ph) the formation of of a benzyl radical
C (X=Ph) may be a driving force of the thioester rearrangement. In the latter
system (A, X=Me) highly volatile products were ignored due to the experimental
difficulty.z) These situations prompted us to investigate the behaviors of 2-
(alkylthio) carbonyl-2-(arylethyl) propyl radicals_lg_(X=PhCH2CH2 and MesCHZCH2 ).
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The reactions of 2-(alkylthio)carbonyl-2-phenethylprepyl bromide (alkyl=Et or

4) and 2-(alkylthio)carbonyl-2-mesitylethyl)propyl bromide (alkyl=Et or
4) 3

t-Bu)
t-Bu) with 1.2 molar equivalents of tributylstannane (10~
gave only 2-(alkylthio)carbonyl-2-phenetylpropane (2) and 2-(alkylthio)carbonyl-
2- (mesitylethyl)propane (6). This feature can be explained by the preferential

hydrogen transfer from tributylstannane to the radical of type B since the rear-

- 10_1M) in benzene

rangement of the thioester group is slow compared to the hydrogen transfer.
Photolyses of 2-(alkylthio)carbonyl-2-phenetylpropyl cobaloxime (l)s) in a
variety of solvents gave products 2, 3, and 4 as listed in Table 1.6) A thioester
rearranged product 3 was obtained only from the ethylthiocester 1 (R=Et) in minute
amount and main products were cyclized ones 4 except for the photolysis in chloro-
form. To retard the radical cyclization to tetralin derivatives, 2-(alkylthio)-

carbonyl-2- (mesitylethyl)propyl cobaloxime (§)5) was photolyzed in similar solvent
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systems to give the products 6, 7, and 8, and the results are summarized in
Table 2.6)
and it is in sharp contrast to the formation of the tetralin derivative 4 from

t-Butylthioester 5 (R=t-Bu) gave a B-thiolactone 8 as amajor product

the cobaloxime 1.
Products 2 and 6 were identified with authentic samples prepared by o-methyl-
ation of the corresponding aralkylthioesters. The structures of rearranged product
7) 7)
3" ana z
related compounds, S-alkyl 3-methyl-3-butenethioate and S-alkyl 3-phenyl-3-butene-
thioate.z) Product 7 (R=Et) shows NMR signals due to the endo-methylene (8=5.02
and 5.07) and the methylene adjacent to the (alkylthio)carbonyl group (3.31, 4,
J=0.7). Structuresﬁ_(R=Et)8)
cm-l) and NMR signals: a singlet due to the methyl at 1.23 and an AB-quartet at
2.53 and 3.25 (J=16) due to the isolated benzylic methylene, Structure §9) was
10) and NMR

signals: a singlet due to the methyl at 1.47, and an AB-quartet at 2.78 and 3.00

were deduced from the comparison of spectral data with those of the

were deduced from an IR absorption for -COSR (1680

characterized by an IR absorption at 1755 cm-1 due to B-thiolactone

(J=8.5). The chemical shift of the quartet is typical for the methylene adjacent
to sulfur in B-thiolactone ring. B-Propiothiolactone and a-dimethyl-f-propiothio-
lactone have signals at 3.05 and 2.73, respectively, due to the B-methylene

whereas B-propiothiolactone and its B-substituted derivatives have signals due to

10) An alternative structure for 8, B-disubstituted

the o-methylene at around 6=4.
B-thiolactone, was eliminated from these spectroscopic features and the analogous
formation of a-dimethyl-B-propiothiolactone, which was identified by reported
spectroscopic data,lo) on the photolysis of 2-(t-butylthio)carbonyl-2-methyl-
propyl cobaloxime (A, R=t-Bu, X=Me).

In the photolysis of 1 the radical cyclization to give tetralin derivarives 4
prefers to the hydrogen abstraction to give reduction products 2, which in turn
prefers to the radical rearrangement of the thioester group. The ethylthioester
5 (R=Et) gives preferably a reduction product 6 (R=Et) but the t-butylthioester
5 (R=t-Bu) gives a reduction product 6 (R=t-Bu) as a minor product except for the
photolysis in chloroform, a strongly hydrogen donating solvent. In less hydrogen
donating solvents, formations of the rearranged product 7 (R=Et) from 5 (R=Et) and
B-thiolactone fronté (R=t-Bu), respectively, become more significant.

Three types of collapsing processes exist for the radical intermediate of
mesityl derivatives, and both a direct hydrogen abstraction and a thioester rear-
rangement via 10 are major processes for the radical intermediate 9 (R=Et) but the
thiolactone formation is more significant for the radical intermediate 9 (Ar=Mes,
R=t-Bu). Thus mesityl group retards the radical cyclization to benzene ring and
the rearrangement of the thioester group is rather significant with the ethylthio-
ester. Nevertheless, a thiolactonization by the loss of alkyl group becomes sig-
nificant with t-butylthiocester. This must be due to a facile cleavage of the
t-butyl-sulfur bond to result in the radical substitution on sulfur. These re-
sults indicate the existence of the equilibrium between the radicals 10 and 1l.
The formula 1l represents an intermediate of SH2 reaction on sulfur, which has a

trigonal bipyramid geometry.



Chemistry Letters, 1987 411

CHg  COSR CHs  COSR
X COSR,_
CH, (Co)Py ———> /\><
2 CH
CHs 3
COSR
1 2 3 4
CHz CHz  COSR COSR F\/lLV/,COSR //\V><{§:
Chy(Copy —2-> //“Jx:
CH CH Mes CH3 Mes
3 3
2 6 z 8
6) 6)

Table 1. Photolyses of cobaloxime 1 Table 2. Photolyses of cobaloxime 5

Product composition/$% Product composition/$%

R solvent 2 : 3 : 4 R solvent 6 : 7 : 8
Et C6H6 8 2 90 Et C6H6 48 50 2
Et CH3OH 13 3 84 Et CH3CN 66 30 4
Et CH2C12 28 2 70 Et CH3OH 80 16 4
Et CHCl3 75 0 25 Et CHC13 100 0 0
t-Bu C6H6 6 0 94 t-Bu c6H6 4 4 92
t-Bu CH3OH 19 0 81 t-Bu CH3CN 18 13 69
t-Bu CH2Cl2 36 0 64 t-Bu CH3OH 12 4 84
t-Bu CHCl3 86 0 14 t-Bu CHCl3 84 0 16

CH 0 CH 0
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The thioester rearrangement has precedentz’ll) but the thiolactone formation

by S 2 reaction on sulfur has no precedent, and the present findings disclosed a

novel variation of the radical substitution on sulfur atom. 12,13)
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