Photolyses of 2-(Alkylthio)carbonyl-2-(arylethyl)propyl Cobaloxime 1)

Masaru TADA, *Tatsuya NAKAMURA, and Mitsuhiro MATSUMOTO

Department of Chemistry, School of Science and Engineering,

Waseda University, Ohkubo, Shinjuku, Tokyo 160

2-(Alkylthio) carbonyl-2-(arylethyl) propyl cobaloximes were photolyzed. When an aryl group is phenyl, a major process is a radical cyclization to give 2-(alkylthio) carbonyl-2-methyltetralin. On the other hand, β -thiolactone is a major product when an aryl group is mesityl and an alkyl group is t-butyl.

We have been concerned with the biomimetic radical rearrangement of a thioester group by using an organocobaloxime, organo(pyridine)-bis-dimethylglyoximato-cobalt(III), as a coenzyme model, and have suggested the possible involvement of cobalt in the rearrangement step. 2,3 In the previous study, 2-(alkylthio)carbonyl-2-phenylpropyl cobaloxime \underline{A} (X=Ph) and 2-(alkylthio)carbonyl-2-methylpropyl cobaloxime \underline{A} (X=Me) were photolyzed to generate radicals \underline{B} which rearrange to radicals \underline{C} . In the former system (\underline{A} , X=Ph) the formation of of a benzyl radical \underline{C} (X=Ph) may be a driving force of the thioester rearrangement. In the latter system (\underline{A} , X=Me) highly volatile products were ignored due to the experimental difficulty. These situations prompted us to investigate the behaviors of 2-(alkylthio)carbonyl-2-(arylethyl)propyl radicals \underline{B} (X=PhCH₂CH₂ and MesCH₂CH₂).

The reactions of 2-(alkylthio)carbonyl-2-phenethylpropyl bromide (alkyl=Et or t-Bu) $^{4)}$ and 2-(alkylthio)carbonyl-2-mesitylethyl)propyl bromide (alkyl=Et or t-Bu) $^{4)}$ with 1.2 molar equivalents of tributylstannane (10 $^{-3}$ - 10 $^{-1}$ M) in benzene gave only 2-(alkylthio)carbonyl-2-phenetylpropane (2) and 2-(alkylthio)carbonyl-2-(mesitylethyl)propane (6). This feature can be explained by the preferential hydrogen transfer from tributylstannane to the radical of type B since the rearrangement of the thioester group is slow compared to the hydrogen transfer.

Photolyses of 2-(alkylthio)carbonyl-2-phenetylpropyl cobaloxime $(\underline{1})^{5}$ in a variety of solvents gave products $\underline{2}$, $\underline{3}$, and $\underline{4}$ as listed in Table 1. A thioester rearranged product $\underline{3}$ was obtained only from the ethylthioester $\underline{1}$ (R=Et) in minute amount and main products were cyclized ones $\underline{4}$ except for the photolysis in chloroform. To retard the radical cyclization to tetralin derivatives, 2-(alkylthio)-carbonyl-2-(mesitylethyl) propyl cobaloxime $(\underline{5})^{5}$ was photolyzed in similar solvent

410 Chemistry Letters, 1987

systems to give the products $\underline{6}$, $\underline{7}$, and $\underline{8}$, and the results are summarized in Table 2.⁶⁾t-Butylthioester $\underline{5}$ (R=t-Bu) gave a β -thiolactone $\underline{8}$ as a major product and it is in sharp contrast to the formation of the tetralin derivative $\underline{4}$ from the cobaloxime 1.

Products 2 and 6 were identified with authentic samples prepared by α -methylation of the corresponding aralkylthioesters. The structures of rearranged product $3^{7)}$ and $7^{7)}$ were deduced from the comparison of spectral data with those of the related compounds, S-alkyl 3-methyl-3-butenethioate and S-alkyl 3-phenyl-3-butenethioate. Product 7 (R=Et) shows NMR signals due to the endo-methylene (δ =5.02 and 5.07) and the methylene adjacent to the (alkylthio)carbonyl group (3.31, d, J=0.7). Structures $\frac{4}{2}$ (R=Et) $\frac{8}{1}$ were deduced from an IR absorption for -COSR (1680) cm⁻¹) and NMR signals: a singlet due to the methyl at 1.23 and an AB-quartet at 2.53 and 3.25 (J=16) due to the isolated benzylic methylene. Structure 8^{9} was characterized by an IR absorption at 1755 cm $^{-1}$ due to β -thiolactone $^{10)}$ and NMR signals: a singlet due to the methyl at 1.47, and an AB-quartet at 2.78 and 3.00 (J=8.5). The chemical shift of the quartet is typical for the methylene adjacent to sulfur in β -thiolactone ring. β -Propiothiolactone and α -dimethyl- β -propiothiolactone have signals at 3.05 and 2.73, respectively, due to the β -methylene whereas β -propiothiolactone and its β -substituted derivatives have signals due to the α -methylene at around $\delta=4.10$ An alternative structure for 8, β -disubstituted β-thiolactone, was eliminated from these spectroscopic features and the analogous formation of α -dimethyl- β -propiothiolactone, which was identified by reported spectroscopic data, 10) on the photolysis of 2-(t-butylthio)carbonyl-2-methylpropyl cobaloxime (A, R=t-Bu, X=Me).

In the photolysis of $\underline{1}$ the radical cyclization to give tetralin derivarives $\underline{4}$ prefers to the hydrogen abstraction to give reduction products $\underline{2}$, which in turn prefers to the radical rearrangement of the thioester group. The ethylthioester $\underline{5}$ (R=Et) gives preferably a reduction product $\underline{6}$ (R=Et) but the t-butylthioester $\underline{5}$ (R=t-Bu) gives a reduction product $\underline{6}$ (R=t-Bu) as a minor product except for the photolysis in chloroform, a strongly hydrogen donating solvent. In less hydrogen donating solvents, formations of the rearranged product $\underline{7}$ (R=Et) from $\underline{5}$ (R=Et) and $\underline{6}$ -thiolactone from $\underline{5}$ (R=t-Bu), respectively, become more significant.

Three types of collapsing processes exist for the radical intermediate of mesityl derivatives, and both a direct hydrogen abstraction and a thioester rearrangement $\underline{\text{via}}$ $\underline{10}$ are major processes for the radical intermediate $\underline{9}$ (R=Et) but the thiolactone formation is more significant for the radical intermediate $\underline{9}$ (Ar=Mes, R=t-Bu). Thus mesityl group retards the radical cyclization to benzene ring and the rearrangement of the thioester group is rather significant with the ethylthioester. Nevertheless, a thiolactonization by the loss of alkyl group becomes significant with t-butylthioester. This must be due to a facile cleavage of the t-butyl-sulfur bond to result in the radical substitution on sulfur. These results indicate the existence of the equilibrium between the radicals $\underline{10}$ and $\underline{11}$. The formula $\underline{11}$ represents an intermediate of S_{H}^2 reaction on sulfur, which has a trigonal bipyramid geometry.

Table 1. Photolyses of cobaloxime $\underline{1}^{(6)}$ Table 2. Photolyses of cobaloxime $\underline{5}^{(6)}$

R s	solvent		comp	oosition/%	- ·	R s	olvent	Produc 6	t compo	osition/	<u>′8</u>
Et	с ₆ н ₆	8	2	90		Et	с ₆ н ₆	48	50	2	
Et	сн зон	13	3	84		Et	CH ₃ CN	66	30	4	
Et	CH ₂ Cl ₂	28	2	70		Et	сн _з он	80	16	4	
Et	CHC13	75	0	25		Et	CHC1 ₃	100	0	0	
t-Bu	с ₆ н ₆	6	0	94	-	t-Bu	с ₆ н ₆	4	4	92	
t-Bu	сн _з он	19	0	81		t-Bu	CH ₃ CN	18	13	69	
t-Bu	CH ₂ Cl ₂	36	0	64		t-Bu	сн _з он	12	4	84	
t-Bu	CHC13	86	0	14		t-Bu	CHC1 ₃	84	0	16	

$$\underbrace{3, 7}_{Ar} \underbrace{CH_3}_{CH_2} \underbrace{SR}_{Ar} \underbrace{CH_3}_{Ar} \underbrace{CH_3}_{R} \underbrace{CH_3}_{R} \underbrace{CH_3}_{R} \underbrace{COSR}_{CH_2} \underbrace{Solv-H}_{2} \underbrace{2, 6}_{9}$$

The thioester rearrangement has precedent 2,11 but the thiolactone formation by $S_{\rm H}^2$ reaction on sulfur has no precedent, and the present findings disclosed a novel variation of the radical substitution on sulfur atom. 12,13)

References

1) This study was supported in part by The Annual Project Organized by Waseda University 1986 and The Grant-in-Aid for Science Research 1986, Ministry of Education.

- 2) M. Tada, K. Inoue, K. Sugawara, M. Hiratsuka, and M. Okabe, Chem. Lett., 1985, 1821.
- 3) M. Tada, K. Inoue, and M. Okabe, Chem. Lett., 1986, 703.
- 4) 2-(Alkylthio)carbonyl-2-(arylethyl)propyl bromides were prepared by the bromomethylation of S-alkyl 4-aryl-2-methylbutanothioate in THF using LDA as a base.
- 5) Cobaloximes $\underline{1}$ and $\underline{5}$ were prepared from the corresponding bromides under the standard conditions recorded in the earlier papers^{2,3)} and gave the correct elemental analyses (C, H, N) and spectral data (IR and NMR).
- 6) A solution of <u>1</u> or <u>5</u> (10 mg) in 10 ml of the solvent was irradiated by a high pressure mercury lamp (400 W) through a Pyrex filter. The reaction mixture was condensed and passed through a short column of silica gel eluted by chloroform, and separated by the preparative TLC on silica gel. Total yields of the products were 80-90% at this stage in the solvents other than benzene and 50-60% in benzene. The product composition was determined by gas chromatographic analyses using SE-30 as a stationary phase.
- 7) $\frac{7}{2}$ (R=Et): m/z=272(M⁺); 1685 cm⁻¹(CCl₄); δ (CDCl₃) 1.24(3H, t, J=7.3), 2.23(3H, s), 2.28(6H, s), 2.87(2H, q, J=7.3), 2.70-3.20(4H, m), 3.31(2H, d, J=0.7), 5.02(1H, diff. s), 5.07(1H, diff. s), 6.82(2H, s). The mass spectra of the minor products $\frac{3}{2}$ (R=Et)(M⁺=276) and $\frac{7}{2}$ (R=t-Bu) (M⁺=304) showed the similar mass-fragmentation pattern to $\frac{7}{2}$ (R=Et).
- 8) $\frac{4}{4}$ (R=Et): m/z=232; 1680 cm⁻¹ (CCl₄); δ (CDCl₃) 1.17(3H, t, J=7), 1.23(3H, s), 1.57-2.33(2H, m), 2.53(1H, d, J=16), 2.60-3.00(2H, m), 2.80(2H, q, J=7), 3.25 (1H, d, J=16), 6.98-7.27(4H, m). $\frac{4}{4}$ (R=t-Bu): 1675 cm⁻¹ (CCl₄); δ (CDCl₃)1.27(3H, s), 1.44(9H, s), 1.80-2.20(2H, m) 2.53(1H, d, J=17), 2.68-2.90(2H, m), 3.24(1H, d, J=17), 7.00-7.28(4H, m). Mass spectrum of $\frac{4}{4}$ (R=t-Bu) showed the similar fragmentation pattern to $\frac{4}{4}$ (R=Et) except no appearance of the molecular peak.
- 9) $\underline{8}$, $m/z=248(13\%, M^+)$, $187(6.2\%, M^+-COS-H)$, $173(8.4\%, M^+-CH_2SCO-H)$, $147(12\%, MesCH_2CH_2^+)$, $133(100\%, MesCH_2^+)$; $1755 \text{ cm}^{-1}(CCl_4)$; $\delta(CDCl_3)$ 1.47(3H, s), 1.73 (2H, t, J=8.5), 2.24(3H, s), 2.27(6H, s), 2.45-2.80(2H, m), 2.78(1H, d, J=8.5), 3.00(1H, d, J=8.5), 6.82(2H, s).
- P. Y. Johnson, Tetrahedron Lett., <u>1972</u>, 1991: P. Y. Johnson and G. A. Berchtold J. Org. Chem., 35, 584 (1970).
- 11) S. Wollowitz and J. Halpern, J. Am. Chem. Soc., <u>106</u>, 8313 (1984).
- 12) R. Leardini, G. F. Pedulli, A. Tundo, and G. Zanardi, J. Chem. Soc., Chem. Commun., 1985, 1390 and references cited therein.
- 13) A. L. J. Beckwith and D. R. Boate, J.Chem. Soc., Chem. Commun., 1986, 189 and references cited therein.

(Received November 19, 1986)